Distributed Robotic Systems

While all fields of robotics have progressed based on rapid advances in information system and computing, the field of distributed abs cooperative robotics has been catalyzed in particular by new communication technologies and network. In the robotics context, the linkage of information systems by wireless, wired, or optical channels and protocol facilitates interactions that quickly scale from two robots shaking hands to a swarm of micro-robots demonstrating cooperative behaviors. The multiple robot development and sensor communication links and the control of those distributed systems in applications domains and laboratory is this subject in this article.

Network robotics has grown around the use of communications channels network, including the internet, as a means to remotely control robots, by humans, as well as support interobot interactions. Major challenges include the understanding of non deterministic time delays in communications and the control formulation and architectural principles that will enable robust performance. Key examples of robotics network include the remote tele-operation of space exploration robots and shared internet access to robotic experiments.

The multi robots systems area has focused on the understanding of physical interactions and constraint among the robots, and between robots and the physical environment such physical interactions may be direct, as in the shared manipulation of indirect, or a single object, as in the cooperative navigation of autonomous vehicles. Interaction associated with the robotic systems physical reconfiguration are also great interest. The theoretical formulation of underlying principle has been critical for this field, and forms the basis for systematic approaches to practical applications.

The multiple robots deployment in complex environments creates demands for distributed sensor network in order to provide guide actions and information and decisions. The distributed sensor network field has been driven by the capability to fabricate Microsystems with low power, high functionality, and wireless communications capability. The large numbers deployment of such expendable devices would provide extraordinary access to information, and also support the deployment of autonomous robotic systems in the field.

No comments:

Post a Comment