The Integrated Telerobotic Surgery System

The total system behaves as the human surgeon would if there were not an encumbering delay performance. Because the simulator through which the surgeon operates is running in real time the surgeon sees reaction the inceptor movements much more quickly than would be the case if she/he were required to wait while the signals made a complete round trip over the long haul network.

The signal path from the surgeon’s inceptor movement proceeds to the simulator and to the intelligent controller simultaneously, which commands the robot movement. This is simulator like any other in that it calculates all of the system dynamic in real time and from these computations come changes to the states of system, which alter the visual scene observed by the physician. The visual scene is generated by high speed computer graphics engines not unlike those employed by simulators of modern flight. However, the proposed embodiment of unique aspect is that the graphics image is updated periodically by the video image transmitted over the long haul network. This approach ensures that the visual scenes at the simulator and at the patient are never allowed to deviate perceptibly. This updated is generated by a complex scheme of image decoding, image format transformation and texture extraction.

The intelligent controller performs the dual role the performance of optimizing robot and preventing inadvertent incisions. The research will investigate two general approaches to the design. One approach will use optimal control theory and the other will utilize a hybrid of soft computing techniques such as neutral network, fuzzy control, and genetic algorithms. The both techniques have been used successfully to control autonomous aircraft.

The simulator also calculates appropriate the forces of inceptor. The drive signal math model for the haptic stimuli will be essentially the same as that in the actual robot although it will rely on a sophisticated organ dynamics model to compute the forces of appropriate organ interacting with the robot end effectors.

No comments:

Post a Comment