There are many advances in robotics and autonomy depend on increased computational power. Therefore, it is advances in high performance, low power space onboard the computers are central to more capable the robotics. Current efforts in this direction include exploiting high performance field of the programmable gate arrays (FPGAs), multi-core processors, and enabling use in space of commercial grade the computer components through shielding, hardware redundancy, and fault tolerant the software design.
Further pushes in these or other directions to achieve greater in-space computing power are needed. The modular interfaces are needed to enable tool change-out for arms on rovers and for in-space robotics assembly and servicing. When the robots and humans need to work in close proximity; sensing, planning, and autonomous control system for the robots, and overall operational procedures for the robots and humans, it will have to be designed to ensure the human safety around the robots. Developing modular the robotic interfaces will also allow the multiple robots to operate together. These modular interfaces will allow the structural, mechanical, electrical, data, fluid, pneumatic and other interaction. The tools and end effectors can also be developed in a modular manner allowing interchangeability and a reduced the logistics footprint.
The modular interfaces will be the building block for the modular self-replicating robots, and self-assembling robotic systems. The reconfigurable system design offers the ability to reconfigure mechanical, electrical and computing assets in the response to system failures. Reconfigurable computing offers the ability to internally reconfigure in response to the chip level failures caused by the environmental (i.e. space radiation), the life limitations, or the fabrication errors. System verification will be a new challenge for the human rated spacecraft bound for the deep space. New V&V approaches and techniques will be required, and in-flight re-verification following a repair may be necessary.
No comments:
Post a Comment